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1 Super Resolution Model Choice

We started of with 6 SOTA (state-of-the-art) models. We began training them and evaluating them based on quality
and speed. We noticed a trade off between quality and inference latency. It was not until we found a competition from
CVPR 2022, the NTIRE Challenge on Efficient Super Resolution, which directly tackled our task on hand [I]. We
were fortunate to have the source code for all of the winners open sourced on GitHub, and experimented with those
as well, which were conveniently in PyTorch [2].

Table [I|shows our findings at our attempt on trying various models. S10e CPU and GPU indicates baseline models
that ran under XGen, where DeepOpt mode was GPU and Fallback mode was the CPU. For the initial experimental
runs, we configured SR models at an upscale of 4x from 270 x 480 to 1080 x 1920 resolution. We upscaled to 1080p
video frames as that was a practical baseline benchmark to begin with, as many smartphone resolutions support up
to that standard or even slightly beyond to 2K (2560 x 1440).

Table 1: Compatibility Matrix and Model Summary

SR Model Inference (V100) Inference (S10e GPU) Inference (S10e CPU) Model Size GFLOPs

ESPCN [3] 1.53 ms 71.76 ms 130.70 ms 244KB 15.99
ByteDance [I] 11.36 ms Compile Error Compile Error 1.2MB 74.33
WDSR [] 31.02 ms 920.32 ms Timeout 4.6MB 307.74
RDN [5] 31.42 ms Timeout Timeout 5.4MB 362.79
RFDN [1] 18.53 ms Compile Error Compile Error 1.1MB 66.91
IMDN [1] 12.72 ms Timeout Compile Error 1.1MB 68.72

We knew that XGen supported WDSR model as they have used it in their demos and paper, but it had a very
slow inference time for us [6]. It could’ve been that we had too large of an upscale factor or input size. A lot of the
super resolution models timed out or didn’t compile under XGen. We ended up using Twitter’s SR model which was
named efficient sub-pixel convolutional neural network (ESPCN) [3]. Out of all the models experimented, it has by
far the fewest FLOPs and fewest parameters, so it’s computationally and memory efficient as well. For the dataset,
we trained on the BSD 300 dataset [7]. Figure [1| shows the computational graph of the SR model we chose.

Table 2: Video Super Resolution Requirements

FPS Latency (ms)

24 41.67
30 33.33
60 16.67
90 11.11
120 8.33

Table [2| shows the strict requirements on latency in order to achieve real-time video super resolution. Our goal
was to at least hit 24 FPS, or an inference latency of 41.67 ms. Many smartphone displays today will go up to 120
FPS refresh rate, and the task of video SR can be helpful for rendering frames in video games as well. If we hit any
threshold beyond 24 FPS, it will be a very competitive and great effort from us.
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Figure 1: ESPCN Graph




2 Hardware Configurations

We initially focused on two different hardware configurations, with the most important evaluation being the smart-
phone. Those two hardware configurations were the NVIDIA V100s on Bridges-2 supercomputer [8] and the two
Samsung Galaxy S10e smartphones provided to us by Dr. Shen connected via his research server. We had many
trouble with getting things compatible on XGen and the Samsung Galaxy S10e, so we also went beyond with a few
more setups. Those included Brian’s personal iPhone 13 Pro Max to run SR models through CoreML, Apple’s own
compiler for machine learning models. Developing applications for iPhone also requires XCode and macOS, so Brian’s
MacBook Pro was also used for some compilation, training, and fine tuning.

2.1 NVIDIA V100

The Bridges-2 supercomputer provides us access to NVIDIA V100 GPUs, state of the art hardware in HPC systems
today. The NVIDIA V100 has 80 streaming multiprocessors.

It delivers 15.7 TFLOPS of single precision floating point performance and 125 TFLOPS of half precision floating
point performance via Tensor Cores [9]. The reason for the big jump between single precision and half precision is
because only the half precision floating point numbers are accelearted on Tensor Cores and the Tensor Cores can deliver
more FMA (fused-multiply adds) throughput per cycles. Although the NVIDIA provides the perfomance numbers, we
prove the derivations of theoretical peaks below:

1533 MHz x 64 FP32 CUDA Cores per SM x 80 SM x 2 FMA = 15.7 TFLOPS for single precision
1533 MHz x 8 Tensor Cores per SM x 80 SM x 64 FMA ops per clock x 2 FMA = 125 TFLOPS for half precision

Knowing these numbers will help us determine if our SR models are running efficiently. It’s important to note
although we can report FLOPs and latency in seconds, and divide them to get FLOPS or FLOPS/s, its percentage of
theoretical peak is not an exact evaluation. Note that there are other operations in a neural network that add onto it,
such as elementwise operations that don’t utilize FMA or some data movement between layers.

2.2 Samsung Galaxy S10e

The two devices available for testing for us was the SM-G970U1 and SM-G970U, which are both variants of Samsung
Galaxy S10e. Both chipsets are essentially the same with a Snapdragon 855.

The Samsung Galaxy S10e has a display size of 1080 x 2280. This is important to mention when we do evaluation
of benchmarks. Although pictures are more susceptible to detail, we must also remember that these models are being
run in real-time and on-device. So scaling up a image via SR beyond the resolution of the smartphone’s display will
give no visual benefits.

Although the Samsung Galaxy S10e has 8 cores, it has a big little core design. It has three tiers of cores named
Prime (1), Gold (3), and Silver (4). They are each clocked at 2.84 GHz, 2.42 GHz, 1.80 GHz respectively.

Assuming that one SIMD vector is 128 bits long, the theoretical peaks of the Prime core is derived as:

2.84 GHz x 4 FP32 lanes per vector x 2 FMA = 5.68 GFLOPS for single precision

2.84 GHz x 8 FP16 lanes per vector x 2 FMA = 11.36 GFLOPS for half precision

This derivation could be inaccurate, as it’s only theoretical and there could be more architectural features we are
aren’t aware of that’s not publicly disclosed. But even for one core, the difference in magnitude shows us how much
of a hardware and performance difference there is when applying optimizations.

2.3 iPhone 13 Pro Max

We used Brian’s iPhone 13 Pro Max on iOS 16.1. Apple states that it has a A15 Bionic Chip with 6-core CPU with
2 performance and 4 efficiency cores, 5-core GPU, and a 16-core Neural Engine [10]. When compiling and executing
via CoreML, XCode conveniently benchmarks and reports which hardware is being utilized per each layer.

The display size is 2778 x 1284, a slightly larger resolution than the Samsung S10e that is most near to 2K resolution
specification [10].



Figure 2: Upper Left: FPGM 90% Pruned, Upper Right: L1 Norm 90% Pruned, Lower Left: L2 Norm 90% Pruned,
Lower Right: Level Pruner 90% Pruned

3 Optimizations

We were limited on what we could do with XGen, mainly being we didn’t have personal GPU setups and we
could not do any training on the XGen machine shared by the class. This disabled us from utilizing the full stack
functionality of XGen. Thus, we went on our own creative ways to at least try to make video super resolution possible
in real-time by other means. This ad-hoc attempt introduced many unintended bugs by XGen, so we made sure to
report any issues and present our limitations. We present our iterative process of optimizations that we tried and
applied. Many of them failed, and only a few worked. But in the end, we were able to get decent results and learn
from what didn’t work, as well as learn new techniques for optimizations.

3.1 Pruning

Pruning was the first optimization we tackled upon. With the help of NNI, we were able to try different pruning
methods on SR models [T1].

We found out that pruning can degrade the quality of SR models. Figure [2] shows results of aggressive pruning of
90%. We see that Level Pruner produces the most stable output, although it has very minor artifacts that make it
unacceptable to use for our final model.

Figure [3| shows the output of the final model that we chose, which was Level pruner of 60%. It seems like Level
Pruner is unstructured pruning, thus we did not see any speedups on the NVIDIA V100 as PyTorch is not optimized
to run on numerical sparse libraries such as cuSPARSE or MKL Sparse. Fortunately, we did see speedups on XGen,
because XGen can automatically detect sparsity and run the model under sparse kernels rather than dense.

Level Pruner is the only pruner where the dimensions of the models were not changed, but some of the weights
were set to 0. While other pruners such as L1 Norm, L2 Norm, and FPGM Pruners pruned away the dimensions of
the weights. From our observations, it seems like structured pruning quickly degrades the quality of the SR model. In
fact, few of the founders of CoCoPIE have reported success with fine-grained structured pruning, although they don’t
mention using XGen [12]. They use block-based pruning and pattern-based pruning to achieve real-time speedups. We
weren’t aware of any external framework other than XGen that did this optimization, so we didn’t experiment with
it. But it’s interesting enough to come back to, as this is integrated in the full stack workflow of XGen [6]. Because
we could not train on Professor Shen’s GPUs, we could not utilize this feature.



Figure 3: Left: Original (1x), Right: Level Pruner 60% Pruned (4x)

3.2 Quantization

We strayed away from doing any quantization to integers or using binary neural networks. As we learned from the
previous optimization of pruning, the weights serve a much more important value in the quality of our SR model and
output. So we aimed to do single precision to half precision quantization, which is the easiest and simplest type of
quantization to apply.

Before doing quantization, we first confirmed that the mobile device hardware supports half precision floating
points. NVIDIA V100 and the ARM ISA are known to support this.

But to make sure, doing adb -s R38M20BDTME shell cat /proc/cpuinfo exposes us what the Samsung Galaxy
S10e’s Snapdragon 855 CPU includes:

Processor : AArch64 Processor rev 14 (aarch64)

processor : 0

BogoMIPS : 38.40

Features : fp asimd evtstrm aes pmull shal sha2

crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp
CPU implementer : 0x51

CPU architecture: 8

CPU variant : Oxd

CPU part : 0x805

CPU revision : 14

This means that at least for CPU, the Samsung Galaxy S10e supports SIMD instructions for FP16 vectors, at
least what is hinted by asimdhp. For what instructions or extensions? We’re not really sure as the internet doesn’t
give many meaningful results on this flag other than it stands for SIMD half precision. It could be NEON or Helium
extensions, but we did not investigate further. We also confirmed that the Ardreno 640 GPU is capable of FP16 as
hinted from some performance benchmarks with FP16 performance of 1.798 TFLOPS at base clock and 2.074 TFLOPS
at boost clock rates [13].

NVIDIA V100 without a doubt has FP16 support on its GPUs. It’s further accelerated by Tensor Cores, giving
a theoretical peak of 125 TFLOPS [9]. It’s able to achieve this over conventional GPUs by having more FMAs per
cycles and an tile array architecture for fast tensor operations. As long as the software is compiled and linked correctly,
we can easily reach beyond real-time inference on any super resolution model on the V100 with FP16 quantization.
Because NVIDIA makes their architecture and specifications publicly available, we're able to theoretically derive its
performance. For the case of the Samsung Galaxy S10e, we’re not so sure for the GPU.

We wanted to manually quantize our model to be fed into XGen, but it turns out XGen automatically does this for
us. So quantization was a not an explicit optimization we could pursue on the mobile device due to this. Also, it turns
out that XGen doesn’t support non FP16 quantization, such as FP32 to Int8, according to their docs [14} [I5]. But the
automatic quantization applied for us by default sounded promising and we continued on pursuing other optimizations.

3.3 Color Optimization

We used an optimization used by Twitter, where they use YCbC'r channels instead of the RGB channels [3]. This
was not an optimization we learned in class, but it did end up helping with the training and inference time. It turns



Figure 4: RGB Channels (R, G, B shown left to right)

Figure 5: YCbCr Channels (Y, Cb, Cr shown left to right)

out, RGB format stores too much redundant data. Figure [4 visually shows this redundancy. And Figure [§| shows
how much detail is retained on the Y or luma channel. The Cb and Cr channels store less detail. Humans are more
susceptible to the luma channel, thus it’s more useful if we can just modify that channel. If we perform SR on only
the Y channel, that still means we need to reconstruct the other two channels, Cb and Cr, when converting it back
to RGB for a viewable image. Since the quality of Cb and Cr channels doesn’t hugely impact the quality of the final
output image, we can upscale them with cheap methods such as Bicubic interpolation.

How we exactly convert it is using elementwise tensor operations and slicing. These are computationally cheap
operations compared to the many convolutional layers that SR models will go through. Images are typically loaded
onto tensors in a NCHW format for PyTorch, and when working with images, the channel size is always 3, each for
red, green, and blue. But we can convert the input tensor from RGB to YCbCr format and throw away Cb and Cr
channels for training and inference. How to convert the channels is given by Equations [1| and

Y = R%0.29900 + G % 0.58700 + B x 0.11400
Cb= Rx*—0.16874 + G * —0.33126 + B * 0.50000 + 128
Cr = R «0.50000 + G * —0.41869 + B * —0.08131 + 128

R=Y + (Cr —128) * 1.40200
G =Y + (Cb—128) * —0.34414 + (Cr — 128) x —0.71414 (2)
B =Y + (Cb—128) * 1.77200

In the end, this reduces our input tensor to the SR model from 3 channels to 1 channel (1 x 3 x H x W to
1x1x H x W), reducing the tensor size 3x.

We realized that there was potentially another opportunity for optimization. By default, the code we used did image
transformations using the Python Imaging Library (PIL), which is not accelerated by CUDA. To speed up this process
on the GPU, we made custom elementwise GPU kernels to make this fast and memory efficient on GPU, as converting
between PIL image format to PyTorch tensors incurs a lot of memory overheads with cudaMemcpyDeviceToHost
and cudaMemcpyHostToDevice between main memory and GPU’s High Bandwidth Memory (HBM). For the mobile
device, writing either a GPU or CPU kernel probably wouldn’t matter since there is less overhead as the GPU and
CPU typically share unified memory on a mobile device. Thus, this optimization was purely done just for the purpose
of our GPU and doesn’t apply for the mobile device.

A disadvantage is that we would need to account for this small overhead in conversion during inference of the
mobile device execution. It also means we would need to write custom kernels and BiCubic interpolation algorithms
for the ARM CPU/GPU, which we could not do for smartphone.



3.4 Hyperparameter Tuning Optimization

This was not necessarily a performance optimization, but an optimization on quality. Because we naively relied
on just the PSNR metric to evaluate our model, we ended up with some misleading results. Some models may have
shown good metrics, but shown bad quality in the actual output image. Because the optimization task required us
to visually see the output image, we did not use NNI HPO for this optimization. Instead, we manually ran different
hyperparameters so we could visually observe, rather than automating the optimization process.

We mainly did hyperparameter tuning on ESPCN. We found some interesting observation that affected the quality
of our model. We found out that having a larger batch size blurred our output image. Initially, we set the batch size
large to 64 to speed up training, as large batch sizes would increase parallelism and potentially move the performance
of some operations memory bound to compute bound. But after training multiple runs and getting blurry images, we
found out a smaller batch size of 4 can achieve sharper images.

Also, when we did the previous optimization by moving images to the GPU using PyTorch, we realized that
torchvision’s read_image does not retain the sharpness of the image, making our output even more blurrier on top
of a high batch size. We were disappointed to find about this inconsistency after confirming it from a blog post and
spending weeks on trying to debug this quality error [16]. This made our image not gain sharpness or perceive higher
resolution despite the upscaling.

Again, most of the popularity in deep learning applications have been classification, so we realized on that the
difference in quality may not hugely affect for task of classification, but for our case on quality, it deeply impacts the
model quality, even if PSNR reports promising numbers.

3.5 Compiler Optimization

This was the last optimization we applied in order to get end-to-end integration of the SR model working on the
smartphone. Originally, we had trouble getting XGen to work, so we explored some other compilers as well. Those
included CoreML, TVM, TensorRT, and ONNX Runtime. We could not get TensorRT working on mobile device, as
that only supports NVIDIA GPUs. TVM and ONNX Runtime supports Android and iOS. We can compile the models
successfully, but we did not know how to actually integrate them into an application or benchmark. Although we had
root access to adb to each of the S10e testing devices, we could not deploy or execute due to lack of an Android SDK
and GUI. CoreML successfully compiles and it’s actually very intuitive to benchmark and integrate. CoreML gives us
the benefit of profiling and seeing which layers execute on which hardware, such as the CPU, GPU, or Apple Neural
Engine (ANE). We achieve beyond our initial goals of real-time SR inference due to utilization of the ANE. Figure |§|
shows a detailed report of ESPCN running at 3ms latency. One disadvantage of CoreML is that it’s only limited to
the Apple environment, so deploying on Android smartphone is not possible.

For XGen, we were able to get one model running with out optimizaitons. One core benefit of XGen is that it
can accelerate unstructured pruned models, or models with sparse weights. During experimentation, we noticed that
CoreML does not do this, or at least does not report a noticeable speedup. In the end, XGen and CoreML were the
two frameworks we used to compare our results on smartphones, as each had their own benefits and tradeoffs.

4 Experimental Results

4.1 Quality
We use the Peak Signal-to-Noise Ratio (PSNR) to evaluate our model quality. PSNR is defined as:
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We train the ESPCN SR model for 100 epochs with Adam optimizer on a StepLR scheduler. Per every 30 epochs,
we decrease the learning rate by a magnitude of v = 0.1. Figure [7] shows the PSNR of the training and test dataset
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Figure 9: Left: Original (1x), Middle: Original: (4x), Right: Level Pruner 60% Pruned (4x)

over those epochs. At the beginning, the PSNR of an image starts of 18.35 dB, and it reaches to a peak of 23.11 dB
after 100 epochs on the training set.

After we prune, we fine tune the model over another 100 epochs, as pruning would change the quality of the model.
So retraining was necessary. Same training configurations and hyperparamers as before. Figure [§| shows the training
and tests PSNR. For pruning ESPCN with Level Pruner of 60%, we started from a training PSNR of 19.19 dB and
reach a peak of 21.46 dB after 100 finetuned epochs. Although this is lower PSNR than the original model, quality-wise
it was the least indiscernible to our eyes compared to higher pruning rates.

Figure [9] shows the quality of the original, upscaled original, and pruned orinal side-by-side for visual comparision.
There seems to be resolution improvements from original to original 4x, and no discernable difference between the
upscaled and the pruned model.

4.2 Latency

As we can see, the V100 can easily hit real-time performance. Figure [I0]shows the inference latencies for different
configurations of ESPCN and hardware. For pruned, we used Level Pruner at 60% pruning rate, as stated in previous
results. We see that only XGen is able to accelerate it with sparse kernels, while the V100 on PyTorch and iPhone
with CoreML show no noticeable speedups or accelerations. We’re able to barely pass real-time performance on S10e,
and we carefully considered the quality of the model before pruning aggressively. So seems like we closed the gap on
our tradeoffs.
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Figure 10: Inference Latency for ESPCN from 270p to 1080p

We hit beyond our real-time performance goals for the V100 and iPhone 13 Pro Max. It’s very impressive how the
iPhone can hit this kind of performance, and shows us the improvements in SOTA hardware accelerators between the
years of the release of the S10e and iPhone 13.

4.3 Storage

Our optimizations could not improve storage efficiency because we did unstructured pruning rather than structrued
pruning. Thus, the weights will hold data for 0s. ONNX file format doesn’t support sparse weight format, so this is
one disadvantage. The size of the ONNX file before and after pruning with Level Pruner for ESPCN is 244KB, for a
pruning rate of 60%.

If we used structured pruning, we can reduce the size of the model. For example, L1 Norm Pruned at at 60%
pruned can reduce the size down to 100KB. But we can assume that Level Pruner weights sum up to a size of around
100KB or more for the same pruning rate from L1, if weights were stored in a sparse format. There should be some
small overhead accounted for not only storing the nonzero values, but also the indices.

5 Lessons Learned

We learned many things, such as how to use TVM, TensorRT, ONNX, ONNX Runtime, CoreML, and lastly XGen.
Since XGen was closed source, we learned upon other compiler frameworks for the sake of a sanity check and to see if
other compilers have any of the same issues. There are new issues we found for the CoCoPIE XGen team to handle. A
difficulty faced in this project is some operations not being supported by XGen and some of the conversions being not
smooth. Although we used XGen in an unintended way, as it’s meant for a full stack optimizations, we believe these
issues are still valuable to raise and mention in order to make XGen a better product and experience. We made sure
to report those issues to help future users and potential future applications or assignments [I7), [I5]. Another thing
learned here is that not all things will work out 100% smoothly with libraries, and we have previously experienced
that and contributed to the open source community with issues for libraries such as NNI and TVM. Of course, XGen
is at an early stage as a startup but we were still able to get some impressive results at the end, despite some technical
difficulties. Most of the fault is on us using XGen in an unintended approach, but we hope that the feedback helps.

A critical feedback we have for the XGen team is to have better documentation, as the implementation is closed
source. We were unsure how some internals worked until we asked engineers at CoCoPIE. For example, we were
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unclear how PixelShuffle worked. It was not only until an engineer explained that XGen uses operator fusion to detect
a pattern of transpose-reshape ops into a PixelShuffle op.

We also learned creative approaches when aggressively finding ways to optimize our models, such as using different
compilers and using color science to algorithmically reduce the computation needed for our model. We were no experts
in computer vision and were only exposed to classification tasks, but the task of SR exposed us to new concepts and
ideas. Using Y CbCr method was very interesting and it’s satisfying to see it work.

6 GitHub Repository

The GitHub repository for this report is publicly accessible here [I8]. To reproduce our findings, please read the
README.md under the final directory. If there are any setup issues on bridges-2 supercomputer or locally, please
contact bepark@ncesu.edu.
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