
Optimizing DNN Operators on Mobile GPUs
Brian Park

bcpark@ncsu.edu
North Carolina State University
Raleigh, North Carolina, USA

Abstract
Performance and tuning of Deep Neural Networks (DNN)
operators are often important for fast and efficient perfor-
mance. The importance becomes more critical when you
target a mobile device, which is constrained on compute,
memory, and power resources. Thus, performance and op-
timization must be carefully considered. Here, we add sup-
port for two DNN models for image classification using Xi-
aomi’s Mobile AI Compute Engine (MACE) on Android de-
vices. MACE is an open source project where DNNs are
compiled to run on Android devices, with backends for
CPU, GPU, and NPU supported. Specifically, we implement
a fast grouped convolution for GPU to complete support
for RegNet and an optimized channel shuffle for GPU to
complete support for ShuffleNet V2+. The implementation
and framework is open-sourced, and can be downloaded at
https://github.com/briancpark/csc766-project

Keywords: DNNs, compiler, mobile, HPC, GPU, computer
architecture
ACM Reference Format:
Brian Park. 2023. Optimizing DNN Operators on Mobile GPUs. In
Proceedings of (CSC 766 Course Project). ACM, New York, NY, USA,
7 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Although MACE is classified as an engine and interpreter,
it can also be seen as a compiler framework to compile and
run DNNs on Android device. This is most similar to other
frameworks from their respective vendors such as Apple’s
CoreML, Meta’s PyTorch Mobile, Google’s TFLite, Tencent’s
NCNN, Alibaba’s MNN, and many more. One of the benefits
of MACE is that it is open-sourced, so its implementation can
be learnt from and improved upon by the open source com-
munity. Because the platform is targeted towards Android
smartphones, with first class support of XiaoMi devices, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CSC 766 Course Project, May 2023, Raleigh, NC
© 2023 Association for Computing Machinery.
ACM ISBN XXXXXXXXX. . . $0.00
https://doi.org/XXXXXXX.XXXXXXX

microkernels are implemented NEON intrinsics and OpenCL
to enable SIMD and SIMT parallelism on CPU and GPU re-
spectively. This report will focus on optimization of GPU
kernels via OpenCL.

2 Motivation, Objectives, and Related Work
Here, we give a quick overview of the operators to be im-
plemented and what needed to be done to give end-to-end
support of the DNN models to be compiled. The two models
are specifically ShuffleNet V2+ Small and RegNet (200M).
These are the smallest versions of the models that should be
ideal to run on a mobile smartphone. These are both models
that are trained and optimized over accuracy on the Ima-
geNet dataset, a 1000 label image dataset popularized for
image classification benchmarks [4].

2.1 ShuffleNet V2+ Small
ShuffleNet V1 is a model architecture that has been highly
popularized over its competitive accuracy and efficiency over
ResNet and MobileNet [6]. Later, improvements for practical
guidelines for efficient design and high performing convolu-
tional neural networks have been proposed in ShuffleNet V2
[3]. As observed from the ShuffleNet designers, convolution
operations take the most amount of FLOPs as well as com-
pute time in a CNN. An issue with traditional ConvNets are
that they are often deep and have bottlenecks if they want to
be designed for mobile devices. Thus, the goal of version 2 of
ShuffleNet was to introduce a channel shuffle operation that
can enable information communication between different
groups of channels. This not only improves accuracy, but
also improves efficiency as well. Figure 1 visually shows how
the channel shuffle operation is performed and how it can
improve efficiency in network design as shown from the
original ShuffleNet paper [6].
Some variants of ShuffleNet use group convolutions or

depth-wise convolutions. MACE does not support the former,
group convolutions. Fortunately, the version of ShuffleNet
we used does not utilize any group convolutions. Later in
RegNet, we’ll explain how group convolutions work, so it
is possible to compile and run a variant of ShuffleNet with
group convolutions. It’s also important to note that MACE
does support ShuffleNet V2 for CPU and GPU. But its GPU
implementation of channel shuffle is only limited to a group
size of 4. Thus, we had to implement channel shuffle with a
group size of 2 in OpenCL to fully complete support. This was
the most straightforward task, and it gave us an introduction

https://github.com/briancpark/csc766-project
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CSC 766 Course Project, May 2023, Raleigh, NC Park

Figure 1. Channel Shuffle Mechanism; (a) two stacked con-
volutional layers with the same number of groups; (b) input
and output channels are fully related when GConv2 takes
data from different groups after GConv1; (c) an equivalent
implementation to (b) using channel shuffle instead [6]

to how the MACE framework worked when implementing
this operation.

2.2 RegNet (200M)

Figure 2. Group Convolution Mechanism; (a) regular con-
volution (or group convolution with 1 group; (b) Group con-
volution with 2 groups [1]

RegNet is a work also popularized over its competitive
accuracy and efficiency over state-of-the-art models like
ResNet, VGG, and AlexNet [5]. Its work focuses on the de-
sign principles for efficient and high performing convolu-
tional neural networks, much like ShuffleNet V2. It com-
bines advantages of manual design and Neural Architecture
Search (NAS). Thus, its focus is evaluation of network archi-
tecture of other competitive networks and ablation studies
to figure out strength and flaws in convolutional network
design. However, group convolution was not originally im-
plemented in RegNet. It dates way back to AlexNet, when
GPUs were very limited by memory and compute resources
at the time [1]. The AlexNet author’s experimental setup

included two GTX 580 GPUs with 3GB of GPU memory. At
the time, there was no such concept of NVLink or GPU-GPU
communication, thus there was a large overhead of commu-
nication between the two GPU devices via CPU-GPU and
GPU-CPU communication through the PCI lanes. As a re-
sult, the authors were bottle-necked by how much memory
and compute a single GPU could perform and proposed a
group convolution algorithm that is embarrassingly parallel
and can be distributed across multiple devices. In this case,
they split a regular convolutional layer into multiple groups
and split it across multiple GPUs. The convolutions that are
done in groups require no communication and are only ag-
gregated in the end when passed to the next layer, making
the algorithm for group convolution communication optimal.
This was written in 2012, and since then GPU hardware has
been greatly improved due to the demand of deep learning,
with GPU memory reaching a peak of 80GB of high band-
widthmemory (HBM) and compute power reaching orders of
magnitude in tera-FLOPS. As an effect, group convolutions
have become obsolete until its efficiency under compute and
memory constraints was required again for mobile CPUs
and GPUs, which is where it has been revived in RegNet ar-
chitecture. Figure 2 shows a visual representation of how the
group convolution operation works. Note that depth-wise
convolution is when groups are equal to the number of input
channels. This was already implemented in MACE, so we
carefully studied already existing implementations of regular
convolution and depth-wise convolution to implement an
optimized group convolution kernel.

3 Implementation

Figure 3. MACE System Architecture

To complete support of ShuffleNet and RegNet, several
steps were required in order to complete support in the
MACE framework. Here, we give a high level overview
of how the operators were implemented under the MACE
framework. First was to compile the model to ONNX for-
mat, which is a high level representation of a DNN in the
semantics of tensors and operators. This can be easily done
with PyTorch or TensorFlow models. We chose to compile
ONNX files from PyTorch models. Then, we need to convert
from ONNX format to MACE ops format, which is another
intermediate representation (IR) that the MACE framework

Optimizing DNN Operators on Mobile GPUs CSC 766 Course Project, May 2023, Raleigh, NC

can understand and apply optimizations over. Those opti-
mizations include operator fusion, high level mathematical
properties, and allocating which hardware target to run effi-
ciently on. For example, a convolutional layer can be fused
with activation layer, to reduce the memory traversal and
footprint. If some ops are incompatible on GPU, the MACE
framework can temporarily fallback to CPU to at least sup-
port the functionality, despite the performance tradeoff. In
order to do these optimizations, they were implemented in
higher level code base written in Python to generate the
MACE IR. The MACE IR is then passed to C/C++ bindings
of optimized operators in programming frameworks or li-
braries such as ARM NEON intrinsics and OpenCL. All of
these are eventually lowered to libmace.so to integrate
to an Android application. In order to evaluate real world
performance, understanding how to develop an Android
application is needed. But for the focus of this report, we
utilize the workflow fromMACE to give us some preliminary
benchmarks as shown in Figure 4. Particularly, the bench-
marking framework gives us detailed op-by-op performance
and throughput for us to debug performance and correctness
of specific layers and operators.

Figure 4. MACE Framework Workflow

4 Experimental Results
We target the XiaoMi 11 Lite. This phone has an Qualcomm
SM7150 Snapdragon 732G octa-core CPU, with (2) 2.3 GHz
performance cores and (6) 1.8 GHz efficiency cores. This
follows a Big Little architecture for the core cluster. It’s im-
portant to note when evaluated against CPU configurations
of the model, only the performance cores are utilized. This is
a safety feature, as oversubscribing all the cores could lead to
intractability of other applications and tasks that are corun-
ning on the smartphone. Also, the imbalance of the cores’
frequency causes load imbalance and is hard to optimally par-
allelize and synchronize. The GPU is equipped with Adreno
618 GPU, but little is publicly known about the microarchi-
tectural features in order to fully optimize performance. We
also only implement and optimize under the assumption
under ARM v8 ISA. The ARM v7 ISA is supported in MACE.
The main difference between v7 and v8 is that v7 is 32 bit
ISA and v8 is 64 bit ISA. But because of the time of doing
this project, v8 is a widely adopted ISA. Thus, our imple-
mentation is not backward compatible to older devices. It’s

also important to note that multithreading is implemented
by MACE themselves, where they tile and parallelize loops
based on their own heuristics from one dimension to up to
three dimensions (dimension in terms of nested for loops).
Their threading library is wrapped around OpenMP, thus
there should be minimal overhead of initializing, creating,
and destroying threads.

To keep benchmark consistent, we measure the inference
time by an input tensor of size 1× 224× 224× 3, which is the
ImageNet dataset parameters. The output is 1 × 1000. Note
that when comparing against the CPU and GPU configura-
tion, some operators in GPU configuration may fall back to
CPU. This will be explicitly noted in the results shown, but
this is mainly due either because (1) the operator is not fully
implemented on the GPU; (2) it is more optimal to run on
CPU than on GPU. MACE does not make this explicitly clear
when a model is converted under the engine, so we have to
guess which choice it makes based on other context. Also
MACE has its own heuristic to determine whether to run
on CPU or GPU, and it will prefer to stay resident on one
hardware target as long as possible. This is because of the
overhead of switching between targets and remapping the
page table for CPU or GPU. Although the smartphone typi-
cally has unified memory, this also affects cache coherency
between the CPU and GPU (under the assumption that L1
or L2 cache is not shared between the two). In the end, it’s
a simple heurstic implemented by MACE, but can also miss
some oppurtunities as we will see in the results.
We choose an evaluation over batch size of 1, because

in production, it’s physically impossible to batch multiple
images to image processing and inference pipeline in real-
time, unless the developer wants to incur some overhead
in predictions to serve to the user. Intuitively, only one im-
age is processed at a time, thus we also optimize the group
convolution and channel shuffle operations under the as-
sumption that a batch size 1 will be called frequently. We
do not consider the optimization under a batched inference,
but it should be supported, although maybe not as perfor-
mant. Since MACE is meant only for inference, we felt that
it was not important to focus on batched inputs, although
it would be helpful in other applications other than image
classification.
MACE also strictly requires GPU kernels to be imple-

mented in NHWC format, while CPU can be inter-operable
between NHWC or NCHW, but prefers NCHW. This is be-
cause the OpenCL programming system prefers the NHWC
format to take advantage of its image and buffer memory
programming model. Because we compiled from ONNX,
which prefers a NCHW format, there will be additional
BufferTransform operators inserted for the GPU congigu-
ration to transpose the ops from NCHW to NHWC for the
inputs and outputs.
For the results shown, they are all run under 1000 trials

and the average is shown.

CSC 766 Course Project, May 2023, Raleigh, NC Park

4.1 ShuffleNet V2+ Small
ShuffleNet V2+ Small has 16 ops in total that are channel
shuffle operations, as shown in Table 1. The channel shuf-
fle operation is already implemented for the CPU and GPU,
which GPU only supporting group size of 4. We simply mod-
ified the GPU kernel for channel shuffle to add support for
group size of 2, which is what all of ShuffleNet V2+ Small
has.
For the CPU implementation, it should be noted that it’s

a scalar implementation. There is no multi-threading in-
volved and it solely uses memcopy. Under the hood, it’s almost
certain memcopy is compiled and optimized to use NEON
vector instructions. But this operation is purely memory
bounded operation with no computations. It’s very possible
that GPU may not give any significant speedups, or even
slower speedups. Typically, GPUs are clocked at lower fre-
quency, with a tradeoff of higher ALU count. Since there is
no actual computation happening and the memory is shared
between CPU and GPU, it’s possible to not achieve speedups.
Thus, we observed slowdowns for channel shuffle on GPU
compared against CPU.

Figure 5. Channel Shuffle Op Performance

4.1.1 Channel Shuffle Performance. Figure 5 shows the
performance of channel shuffle over the whole execution
time of ShuffleNet V2+ Small. Unfortunately, there’s a slow-
down of 0.6× compared against CPU with a runtime of 216
microseconds. The execution time is very negligible in terms
of the whole runtime (about 1% of ShuffleNet execution time
on CPU). Any improvements does not really bring significant
speedups to the whole model. Considering that the channel
shuffle operators for both CPU and GPU happen at the mag-
nitude of microseconds, there was not much motivation to
improve further for the GPU operator.

4.1.2 End-to-End Performance. When compiled under
GPU configuration, slice and concat ops do not support the

Table 1. ShuffleNet V2+ Small Channel Shuffle Parameters

Tensor Name Input/Output Shape

Transpose_34 [1,48,28,28]
Transpose_82 [1,48,28,28]
Transpose_130 [1,48,28,28]
Transpose_178 [1,48,28,28]
Transpose_215 [1,96,14,14]
Transpose_263 [1,96,14,14]
Transpose_311 [1,96,14,14]
Transpose_359 [1,96,14,14]
Transpose_407 [1,96,14,14]
Transpose_455 [1,96,14,14]
Transpose_503 [1,96,14,14]
Transpose_551 [1,96,14,14]
Transpose_588 [1,192,7,7]
Transpose_636 [1,192,7,7]
Transpose_684 [1,192,7,7]
Transpose_732 [1,192,7,7]

operators on the channel axis dimension. Thus, both ops fall
back to CPU and run on NCHW format, causing lots of trans-
pose ops inserted to convert back and forth between the two
formats. In addition, the last MatMul (GEMM) and Reduce
Mean operator fall back to CPU. The reduce operator also
falls back due to unsupported axis on the GPU, where reduce
mean is only supported height and width axis. This causes an
end-to-end slowdown of 0.2× compared against the CPU as
shown in Figure 6. Figure 7 shows the breakdown op-by-op.
We observe significant improvements in computationally
heavy operations such as Conv2d and DepthwiseConv2d.
But we see that there is even an additioanl slowdown for
operators that fellback on CPU in GPU configuration, which
is Concat, Slice, Reduce, and MatMul. We are not sure of the
root cause, but we suspect that some formats are not fully
optimized on CPU for NHWC format or there is additional
overhead between switching hardware targets.

Also note that the breakdown doesn’t necessarily add up to
the GPU runtime of 60ms, so there is some overhead involved
when benchmarking the MACE framework op-by-op.

4.1.3 Analysis. As mentioned before, a different version
of ShuffleNet V2 was already supported in MACE, but it was
only for the CPU configuration. It could be that case that
MACE developers found the CPU more efficient due to the
better support of operators. The ShuffleNet V2 paper did
experimental analysis of the model on a Qualcomm CPU,
not GPU [3]. Thus, this was a first attempt at implementing
ShuffleNet for mobile GPU. Further experiments on other
devices should be done to know if the GPU can close the
gap, but for now, our analysis of if GPU is actually slower or
if our algorithm is not optimal is inconclusive. We cannot
know for sure until we know the microarchtiectural details

Optimizing DNN Operators on Mobile GPUs CSC 766 Course Project, May 2023, Raleigh, NC

Figure 6. ShuffleNet V2+ Small End-to-End Performance

of the Ardreno 618 GPU to compare the peak memory band-
width against the CPU bandwidth. Even though CPU and
GPU share the main memory, the CPU for channel shuf-
fle is single threaded, but most likely vectorized. On GPU,
OpenCL manages how many threads or work groups, so
it could be that GPU execution and memory units are not
saturated enough based on the operator inputs to deliver
peak performance.

Figure 7. ShuffleNet V2+ Small Breakdown

4.2 RegNet (200M)
RegNet (200M) calls group convolution with the specific pa-
rameters shown in Table 2. In total, there are 13 grouped
convolutions. And we see that only the 3 × 3 kernel is called.
Thus we implemented and optimized CPU and GPU micro-
kernels for grouped convolution, with also a generic grouped
convolution as a fallback for any other model that doesn’t
call a 3 × 3 kernel.

For the implementation of group convolution, CPU and
GPU were unimplemented in the MACE framework. Thus,
we implemented and optimized CPU and GPU kernels, with
a focus on GPU. Both implementations derived microkernels
from regular convolution and added an extra for loop to
iterate over the groups. In terms of loop ordering, we found
that putting in the order of batch, group, output channel,
input channel, height, width makes the most intuitive sense
(this is an example given for NCHW case). Trying other
orderings give sub-optimal performance. Groups should be
place right after batch, since data locality can be benefited:
there is no data dependency between the batch and group
dimension.

Thus, for CPU implementation, we implemented two mi-
crokernels in NEON intrinsics: GroupConv2dK3x3S1 and
GroupConv2dK3x3S2. The only difference between the two
are the strides. We took the regular Conv2d 3×3 kernels and
added an extra for loop to iterate over groups. We also had
to change the ThreadPool which was originally parallelizing
over two dimensions: the batch and output channel dimen-
sion. We changed this ThreadPool dimension to include the
groups as well. We also experimented with just two dimen-
sions over batch and group dimensions, but we found out
that doing three dimensions gives a slightly better runtime.
Also, under assumption of batch size of 1, we are effectively
performing threading over two dimensions, not three.

For GPU implementation, we do the same and just simply
modify a regular convolution 3 × 3 kernel to iterate over
groups. It’s very simple implementation and gives us good
performance.
Note that for the GPU configuration of RegNet, only the

last layer, GEMM, fallsback to the CPU. We suspect that it
fallsback to the CPU because it is the last layer and needs
to serve the results to CPU anyways. But its performance is
very low compared against CPU configuration. We suspect
that it maybe due to the data format and a microkernel not
being optimized. The operation that’s happening is not really
matrix multiplication or GEMM, rather matrix-vector multi-
plication or GEMV since we are still under the assumption
of batch size of 1.

4.2.1 GroupedConvolutionPerformance. Figure 8 shows
the op performance of group convolution over the overall
runtime of RegNet execution time for CPU and GPU con-
figuration. We see that we indeed get a speedup of 5.84×
when running on the GPU with a runtime of 461 microsec-
onds. The operator performance on GPU is pretty good when
compared against CPU. It’s also much more faster than reg-
ular convolutions as we will discuss in the next section. To
justify this performance, we can compare against MACE’s
depth-wise convolution operator, and see that it has similar
throughput and execution time, since depth-wise is a special
case of group convolution where number of groups equals
to the number of input channels.

CSC 766 Course Project, May 2023, Raleigh, NC Park

Table 2. RegNet (200M) Group Convolution Parameters

input output weight bias kernel stride padding groups

1,24,112,112 1,24,56,56 24,8,3,3 24 3,3 2,2 1,1,1,1 3
1,56,56,56 1,56,28,28 56,8,3,3 56 3,3 2,2 1,1,1,1 7
1,152,28,28 1,152,14,14 152,8,3,3 152 3,3 2,2 1,1,1,1 19
1,152,14,14 1,152,14,14 152,8,3,3 152 3,3 1,1 1,1,1,1 19
1,368,14,14 1,368,7,7 368,8,3,3 368 3,3 2,2 1,1,1,1 46
1,368,7,7 1,368,7,7 368,8,3,3 368 3,3 1,1 1,1,1,1 46

Figure 8. Group Convolution Op Performance

4.2.2 End-to-End Performance. For GPU configuration
of RegNet, only the last MatMul (GEMM) fallsback to CPU.
Thus, the GPU configuration is pretty optimal in terms of
performing its computations on the GPU. We get a speedup
of 1.2× over the CPU configuration with an execution time
of 15.5 ms. This equates to a 65 FPS throughput, making
it good for real-time video applications. This is an 11 FPS
improvement over the CPU configuration that can achieve
54 FPS. This is very minimal, but we find that when breaking
down the performance op-by-op, MatMul (GEMM) takes
the most time because it falls back to CPU as shown in
Figure 10. If we can somewhat optimize MatMul on CPU or
force it to run on GPU, we could potentially see much more
speedups, equating to 8.9 ms or a 2.1× speedup. That equates
to 112 FPS, and is beyond real-time for video applications.
As mentioned before, the sub-optimal performance was also
shown in ShuffleNet V2+, so further work needs to be done
on how to improve the performance of the overall model on
a GPU configuration.

4.2.3 Analysis. We see that our group convolution per-
formance is ideal. But there is still more room to improve,
because when observing the MACs, it doesn’t quite reach the
throughput compared against a regular convolution. Most
of that is due to under-utilization of compute units are the

Figure 9. RegNet (200M) End-to-End Performance

convolution is split upon groups and smaller computations
are done on small partitions of data. Thus, the compute units
are not as saturated and exploiting cache and data reuse
compared against regular convolution.

Figure 10. RegNet (200M) Breakdown

Optimizing DNN Operators on Mobile GPUs CSC 766 Course Project, May 2023, Raleigh, NC

5 Challenges and Lessons Learned
Some challenges included getting the Android development
setup correctly for productive development and debugging.
We learned that early on, GDB is near impossible, unless the
phone is unlocked or rooted. This can cause risks towards
data loss or usability of the smartphone, so we avoided it and
used log and print statements instead. The devices we used
were production devices, so we were limited bypassing the
security measures on the device. Unfortunately, this could
mean there could still exists some bugs that are unseen by the
debugger or missed by us. Fortunately, from what we tested,
there seems to exist no bugs for the models we optimized
and implemented over.
Other challenges included vague knowledge about how

Ardreno GPUs work and trying to optimize performance for
their microarchitecture. This is in contrast to CUDA devices,
where GPUs released from NVIDIA usually have a whitepa-
per architecture report associated with them, listing out how
many Streaming Multiprocessors (SMs) they have, how large
the register file is, what accelerators are present (i.e. Ten-
sorCores), and more. Also, because this library is meant for
multiple generations of devices supported under Android,
we cannot necessarily optimize performance for one device
without creating larger code size. For example, some quick
results on a Google Pixel 7 showed that the performance
is actually slower on GPU compared to the XiaoMi device
we used. The Pixel 7 uses a ARM Mali GPU in contrast to
a Qualcomm Ardreno GPU. The Pixel 7 is two generations
newer than the XiaoMi, but because of the different GPUs,
we suspect there might be something different in the GPU’s
microarchitecture to give us the suboptimal performance.

6 Future Work
Although end-to-end performance of the ShuffleNet V2+
model could not be fully accelerated to its full potential on
the GPU, we wish to use the implementation and integrate it
to another framework, CoCoPIEXGen. CoCoPIEXGen is also
another DNN framework providing fullstack optimizations
to DNNs for mobile devices, such as pruning, quantization,
and compiler optimizations [2].

Based on the results, there is actually probably more room
to optimize. Although the speedups from CPU to GPU are
promising, the throughput or multiply-accumulates (MACs)
doesn’t quite reach as high as the ones with regular convo-
lutions. There are also many issues regarding to the perfor-
mance of group convolutions in PyTorch and other frame-
works. The sole reason in the PyTorch case is because it is
calling cuDNN kernels, making the performance issue on
NVIDIA’s end. But in general, GPUs are treated as one large
SIMD unit, where only one kernel is run at a time. In the case
of group convolution, it is optimal for multiple kernels to run
concurrently per group. But because the individual grouped

kernels are relatively small sized, they do not saturate the
execution units enough to give peak performance.

7 Artifact Evaluation
To reproduce the findings in this paper, please head over
to GitHub and clone the repository at https://github.com/
briancpark/csc766-project. There are detailed instructions
on how to install and setup the environment, as well as how
to reproduce the results shown in this report.

Acknowledgments
This project was done under guidance of Dr. Xipeng Shen’s
course: Computer Science 766: Code Optimizations of Scalar
and Parallel Programs. Android phone thatwas benchmarked
and developed in this report was graciously lended by him.
Also thanks to Dr. Bin Ren and Jiexiong Guan for giving
guidance and suggestion of understanding the performance
on mobile devices and the MACE framework.

References
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet

Classificationwith Deep Convolutional Neural Networks. In Proceedings
of the 25th International Conference on Neural Information Processing
Systems - Volume 1 (Lake Tahoe, Nevada) (NIPS’12). Curran Associates
Inc., Red Hook, NY, USA, 1097–1105.

[2] Xiaofeng Li, Bin Ren, Xipeng Shen, and Yanzhi Wang. 2022. CoCoPIE
XGen: A Full-Stack AI-Oriented Optimizing Framework. https://doi.
org/10.48550/ARXIV.2206.10620

[3] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. Shuf-
fleNet V2: Practical Guidelines for Efficient CNN Architecture Design.
CoRR abs/1807.11164 (2018). arXiv:1807.11164 http://arxiv.org/abs/1807.
11164

[4] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/s11263-015-0816-y

[5] Jing Xu, Yu Pan, Xinglin Pan, Steven Hoi, Zhang Yi, and Zenglin Xu.
2022. RegNet: Self-Regulated Network for Image Classification. IEEE
Transactions on Neural Networks and Learning Systems (2022), 1–6. https:
//doi.org/10.1109/TNNLS.2022.3158966

[6] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2017. Shuf-
fleNet: An Extremely Efficient Convolutional Neural Network for Mo-
bile Devices. CoRR abs/1707.01083 (2017). arXiv:1707.01083 http:
//arxiv.org/abs/1707.01083

Received 1 May 2023

https://github.com/briancpark/csc766-project
https://github.com/briancpark/csc766-project
https://doi.org/10.48550/ARXIV.2206.10620
https://doi.org/10.48550/ARXIV.2206.10620
https://arxiv.org/abs/1807.11164
http://arxiv.org/abs/1807.11164
http://arxiv.org/abs/1807.11164
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/TNNLS.2022.3158966
https://doi.org/10.1109/TNNLS.2022.3158966
https://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083

	Abstract
	1 Introduction
	2 Motivation, Objectives, and Related Work
	2.1 ShuffleNet V2+ Small
	2.2 RegNet (200M)

	3 Implementation
	4 Experimental Results
	4.1 ShuffleNet V2+ Small
	4.2 RegNet (200M)

	5 Challenges and Lessons Learned
	6 Future Work
	7 Artifact Evaluation
	Acknowledgments
	References

