
Group 64: Enabling GPU Support on NumS

76

Approaches
● Single GPU with CuPy
● Multi-GPU with CuPy and NCCL

○ Able to utilize NVLink 
connections for GPU-GPU 
memory transfers.

○ Using NCCL is not fault 
tolerant and may lead to 
deadlocks (just like MPI).

● Multi-GPU with CuPy and Ray
○ Ray incurs a lot of overhead 

due to Object Store being part 
of main memory. 

○ It is not aware of NVLink 
connections.

Preliminary Benchmarks
● Benchmarks done on Bridges-2 with 8 

NVIDIA V100s connected with NVLink 
using Multi-GPU with NCCL backend.

Design

Problem
● GPU allows for faster computation 

compared to CPU.
● CUDA C/C++ is not easy to program.
● NumS usage was originally intended 

for cloud computing, not HPC systems.

Kunal Agarwal, Parth Baokar, Brian Park

Challenges
● CuPy kernels execute fast, so overhead of function 

dispatch becomes noticeable.
● Accessing low-level CUDA API through Python is not 

elegant and has limited support.
● GPU memory is limited, thus hits OOM earlier (32GB 

for each V100).

Benefits
● CuPy uses optimized packages from CUDA Toolkit 

(cuBLAS, NCCL, etc).
● Ease of use and debugging with Python compared to 

CUDA C/C++.
● One can easily change NumS backend from CPU to 

GPU with a single line of code.
● Uses existing NumS kernels and algorithms that are 

communication optimal.


