NumsS

Problem
GPU allows for faster computation
compared to CPU.
CUDA C/C++ is not easy to program.
NumS usage was originally intended
for cloud computing, not HPC systems.

Approaches
Single GPU with CuPy
Multi-GPU with CuPy and NCCL
o Able to utilize NVLink
connections for GPU-GPU
memory transfers.
Using NCCL is not fault
tolerant and may lead to
deadlocks (just like MPI).
Multi-GPU with CuPy and Ray
o Rayincurs a lot of overhead
due to Object Store being part
of main memory.

Group 64: Enabling GPU Support on NumS

Kunal Agarwal, Parth Baokar, Brian Park

4Lrise

Benefits
CuPy uses optimized packages from CUDA Toolkit
(cuBLAS, NCCL, etc).
Ease of use and debugging with Python compared to
CUDA C/C++.
One can easily change NumS backend from CPU to
GPU with a single line of code.
Uses existing NumS kernels and algorithms that are
communication optimal.

Preliminary Benchmarks
Benchmarks done on Bridges-2 with 8
NVIDIA V100s connected with NVLink
using Multi-GPU with NCCL backend.

Challenges
CuPy kernels execute fast, so overhead of function
dispatch becomes noticeable.
Accessing low-level CUDA API through Python is not
elegant and has limited support. = ums g viug
GPU memory is limited, thus hits OOM earlier (32GB 251 " Thearetcl venk
for each V100).

NumS GPU DGEMM TFLOPS on n x n Matrix

—— CuPy Single Node
30 NumS (1 V100)
—— Nums (2 V100s)

eak 2
201 - Empirical Peak 4X

Design

sssssss

It is not aware of NVLink
connections.

NumsS Application

15
10

Compute Interface

A7

5000

System Interface

10000 30000 35000

15000 20000
i ension

25000
Matrix n Dim xn)

Berkeley

UNIVERSITY OF CALIFORNIA

Dask

y

CuPy Kernel

i 2

Ray

3» RAY

MPI NCCL
&
el 2

