NumsS

Problem
GPU allows for faster computation
compared to CPU.
CUDA C/C++ is not easy to program.
NumS usage was originally intended
for cloud computing, not HPC systems.

Approaches
Single GPU with CuPy
Multi-GPU with CuPy and NCCL
o  Able to utilize NVLink
connections for GPU-GPU
memory transfers.
Using NCCL is not fault
tolerant and may lead to
deadlocks (just like MPI).
Multi-GPU with CuPy and Ray
o  Rayincurs a lot of overhead
due to Object Store being part
of main memory.
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Benefits
CuPy uses optimized packages from CUDA Toolkit
(cuBLAS, NCCL, etc).
Ease of use and debugging with Python compared to
CUDA C/C++.
One can easily change NumS backend from CPU to
GPU with a single line of code.
Uses existing NumS kernels and algorithms that are
communication optimal.

Preliminary Benchmarks
Benchmarks done on Bridges-2 with 8
NVIDIA V100s connected with NVLink
using Multi-GPU with NCCL backend.

Challenges
CuPy kernels execute fast, so overhead of function
dispatch becomes noticeable.
Accessing low-level CUDA API through Python is not
elegant and has limited support. = ums g viug
GPU memory is limited, thus hits OOM earlier (32GB 251 " Thearetcl venk
for each V100).
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Design
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It is not aware of NVLink
connections.
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